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Abstract: Depletion experiments are conducted to estimate efficiency of sampling gear and density of organisms. Tra-
ditional models for analyzing these experiments make restrictive assumptions that are often violated. We present a new
spatial model, suitable for sessile benthic invertebrates, that does not depend on these restrictive assumptions. The new
model (i) allows flexibility during the experiment in choosing the spatial location of successive samples, (ii) does not
require organisms or successive samples to be randomized over the entire area of the experiment, and (iii) permits tar-
get organisms to be lost or added during the experiment. The model treats total catch per sample as a sum of catches
from smaller cells with different, but known, sampling histories. A negative binomial model is used to describe the dis-
tribution of catches from tows made during the depletion experiment. Maximum likelihood methods are used to esti-
mate parameters, derive confidence regions for parameters, and evaluate goodness of fit between data and the model.
Data from an experiment involving Atlantic surfclams (Spisula solidissima) are used to demonstrate the model.

Résumé : Des expériences d’épuisement nous permettent d’estimer l’efficacité des engins d’échantillonnage et la den-
sité des organismes. Les modèles couramment utilisés pour analyser ces expériences font des présuppositions restricti-
ves qui sont souvent violées. Nous présentons une nouvelle modélisation spatiale applicable aux invertébrés benthiques
sessiles qui ne dépend pas de ces présuppositions restrictives. Le nouveau modèle (i) permet une flexibilité durant
l’expérience pour choisir le site des échantillonnages successifs, (ii) ne requiert pas que les organismes ni les échantil-
lons successifs soient répartis au hasard sur toute la surface expérimentale et (iii) permet que des organismes ciblés
soient perdus ou ajoutés au cours de l’expérience. Le modèles traite la capture totale par échantillon comme la somme
des captures de cellules plus petites avec des histoires d’échantillonnage différentes, mais connues. Un modèle binomial
négatif sert à décrire la distribution des captures provenant des traits de récolte durant l’expérience d’épuisement. Des
méthodes de vraisemblance maximale permettent d’estimer les paramètres, de déterminer les intervalles de confiance de
ces paramètres et d’évaluer l’ajustement entre les données et le modèle. Des données provenant d’une expérience avec
les mactres de l’Atlantique (Spisula solidissima) nous servent à faire la démonstration du modèle.

[Traduit par la Rédaction] Rago et al. 2388

Introduction

A central problem in fisheries science is estimation of the
catchability coefficient, a scalar that converts measures of
relative abundance to absolute estimates of abundance. One
can estimate the catchability coefficient of sampling gear by
carrying out a depletion experiment, in which samples are
taken without replacement from a closed population and
catch per unit of sampling effort is monitored. Depletion ex-
periments (e.g., Lasta and Iribarne 1997) are needed when it
is not feasible to sample organisms directly with box cores,
grab samples, or in situ sampling by divers. Direct sampling
with divers may be too risky or impractical. Even when di-
rect sampling is feasible, it may not be possible to sample a
sufficient number of organisms or to cover a large enough
area of the bottom (e.g., Caddy 1968; Smolowitz and Nulk
1982). Additionally, direct sampling methods can have cer-

tain biases related to the scale of observation or selectivity
of the gear for limited size ranges.

The first depletion models for closed populations were de-
veloped by Leslie and Davis (1939) and DeLury (1947).
Those early models included the following primary assump-
tions: (i) all extant individuals have the same probability of
being caught in a sample, (ii) the expected catch in a sample
is proportional to sampling effort, (iii) the catch depends on
the cumulative catch of preceding samples, and (iv) all re-
movals are known. In sampling a population of sessile or-
ganisms with a dredge, these assumptions are violated in
subtle but important ways. A dredge sample can be viewed
as the summation of a set of quadrats linked by the tow path.
Because of an inability to accurately control the tow path of
a dredge in deep water, one cannot assume that the probabil-
ity of sampling a particular quadrat is random. The length of
the tow and the number of previous tows through each
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quadrat determine the number of animals caught in a partic-
ular tow. In a traditional experiment, one expects the num-
ber of animals per tow to decline monotonically with the
number of tows. For sessile animals being sampled with a
dredge, the catch in later tows may increase depending on
the location of the tow. Another source of variation arises
when availability of organisms changes during an experi-
ment (e.g., Kendall and Bjorkland 2001; Peterson et al.
2004). Thus the variation in catches can exceed that ex-
pected under a standard depletion model that assumes a
multinomial distribution for catches from a closed,
nonspatially distributed population (Gould and Pollock
1997). The excess variation (i.e., overdispersion, sensu
McCullagh and Nelder 1989) is not all due to the spatial dis-
tribution of animals, but also arises from the sampling pro-
cess itself. This is related to the problem of heterogeneous
capture probabilities described in Pollock et al. (1984) and
Hilborn and Walters (1992).

Several models have been developed to address cases in
which one or more of the traditional depletion model as-
sumptions are violated (Carle and Strub 1978; Chien and
Condrey 1985; Wang and Loneragan 1996). Mohn and Elner
(1987) demonstrated that when the population is not uni-
formly distributed, the Leslie–Davis model underestimates
abundance and overestimates gear efficiency. Miller and
Mohn’s (1993) analysis of sources of bias in depletion ex-
periments demonstrates the need to consider spatial hetero-
geneity of organisms. Joll and Penn (1990) explicitly
addressed the spatial aspect of sampling in their analyses of
scallop (Amusium balloti) and western king prawn (Penaeus
latisulcatus) populations.

Beginning with Taylor (1953) and continuing to Power
and Moser (1999), various investigators have characterized
the empirical distributions of catches of aquatic animals us-
ing a negative binomial distribution ~NB(�,k). We also em-
ployed this distribution in our model. The applicability of
the NB model can be demonstrated theoretically as the sum-
mation of a Poisson random process with randomly varying
capture probabilities (see Johnson et al. (1993) and refer-
ences therein), as well as empirically (Houser and Dunn
1967; Welch and Ishida 1993; White and Bennetts 1996).
The NB model explicitly accounts for the extra variation in
observed catches and reduces to the Poisson distribution as
the dispersion parameter K becomes large.

Two additional properties of the NB distribution make it
appropriate for the analysis of catches in a depletion experi-
ment. First, the catch in a tow is the sum of catches from in-
dividual patches, each with the number of organisms
distributed as NB random variables. The sum of individual
random variables drawn from a NB distribution with param-
eters � and ki is also distributed as a NB random variable
with parameters � and �ki (Johnson et al. 1993). Second, the
dispersion parameter K is invariant with respect to changes
in density, which would occur as a result of removals (Pielou
1977, p. 128).

Overdispersion of count data has been demonstrated in
many applications of the Leslie–Davis and DeLury removal
models (e.g., Paloheimo 1963; Otis et al. 1978; Schnute
1983). Both parametric (e.g., Wang and Loneragan 1996)
and semiparametric (e.g., Gould and Pollock 1997) methods
for dealing with overdispersion have been applied to deple-

tion experiments. Following the rationale of Lawless (1987),
who emphasized the utility of relating the overdispersion to
the underlying processes, we chose the NB model as a para-
metric approach to describe overdispersion. Our application
of the NB model uses the cumulative spatial pattern of ani-
mal removals to define the probabilities of capture and ex-
pected catch per tow. This approach is tailored to sessile
organisms sampled by a device the position of which is dif-
ficult to control. The likelihood function for the NB in our
model explicitly conditions the parameters in each succes-
sive probability density function of the likelihood function
on the cumulative spatial pattern of removals.

Our new model has been used to estimate dredge effi-
ciency in National Marine Fisheries Service (NMFS) re-
search surveys of the Atlantic surfclam, Spisula solidissima
(Northeast Fisheries Science Center (NEFSC) 2003), ocean
quahog, Arctica islandica (NEFSC 2004), and sea scallop,
Placopecten magellanicus (NEFSC 2001). In the model, ani-
mals are distributed across the sea floor in a matrix of square
cells. The catch in a single sample (i.e., tow) represents the
sum of catches from all cells (under the constraint that cell
width � the width of the sampling device) that were con-
tacted. The total catch depends not only on the number of
cells sampled, but also on the sampling history of each cell
in the tow path. A NB model is used to describe the distribu-
tion of catches, and maximum likelihood methods are used
to estimate parameters, derive confidence regions, and evalu-
ate goodness of fit. Parameters that are estimated include
initial (presampling) density of animals, efficiency of sam-
pling gear, indirect effects of sampling gear on catches (such
as the burial of clams by a clam dredge), and the clumping
parameter of the NB model. To demonstrate the model, we
applied it to data from a field experiment on clams.

Existing theory

The expected catch E(C) in a sample from a closed popu-
lation can be expressed as the product of population abun-
dance (N), sampling effort (f), and efficiency (e) of the
sampling device. If we assume that f is equal to the area
swept by the gear (a) divided by the total area (A) of the
closed population, then expected catch can be expressed as

(1) E C e a A N( ) ( / )�

where e is the probability of capture given encounter with
the fishing gear, and a/A is the probability of encounter. If
the animals are randomly (i.e., Poisson) distributed within
the potential sampling area before each sample is taken, then
the probability of encounter will be proportional to the area
sampled by the gear, a, divided by the total area of the ex-
periment, A. Likewise, if the animals are randomly distrib-
uted as groups, with varying numbers of individuals, then
the probability of encountering a group will still be propor-
tional to a/A but the expected variance of C will be higher
(Sampson 1988).

The Leslie and Davis (1939), DeLury (1947), and Ricker
(1975) models for depletion experiment data begin with the
premise that the catch is equal to the probability of capture ×
population size in a fixed area at the start of the interval. Av-
erage density following a removal is equal to initial popula-
tion size minus the catch, all divided by the total area. Every
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time sampling takes place, all individuals are assumed to
have the same probability of being captured. The Leslie–
Davis model is obtained by recursively applying eq. 1,
which gives the population size after each catch. Writing the
terms e(a/A) in eq. 1 as q and recursively applying eq. 1 re-
sults in the Leslie–Davis equation:

(2) E C q N Ti i( ) ( )� � �0 1

where T Ci jj

i
� �

�� �1 1

1
for tow number i. Thus the expected

catch in the ith sample E(Ci) is proportional to the initial
population size minus the cumulative catch from previous
samples (Ti–1). Although eq. 2 can be written as a linear re-
gression, a least squares method is not appropriate in this
case because the variance of Ci changes with each observa-
tion (Seber 1973; Schnute 1983). Gould and Pollock (1997)
showed that maximum likelihood estimation (MLE) was the
most appropriate method for estimating the parameters of
the Leslie–Davis model.

Need for spatial approach

Existing theory models catches from a closed population
without considering the organism’s spatial distribution or the
location where the sample was taken. For sessile animals, a
removal experiment may be more properly viewed as sam-
pling from a collection of cells in a grid, each of which may
be subject to sequential sampling. The expected value of
catch in any single sample depends on which cells were
sampled and the number of times that each was sampled pre-
viously.

The following example demonstrates how failure to con-
sider the spatial pattern and temporal sequence of catches in
a depletion experiment can dramatically bias the estimates of
true underlying population size and gear efficiency. Consider
an experiment with sessile organisms in which the experi-
mental area is wider than the width of the sampling device
(Fig. 1). Assume that the experimental area is three paths
wide, true population size is 300 individuals, gear efficiency
is 0.5, a total of nine tows are taken, and each of the paths is
sampled three times. We consider three hypothetical scenar-
ios in which the paths are swept in different orders. In sce-
nario 1, the first three tows are taken in the same path, the
second three tows occur in the next path, and the last three
tows occur in the remaining path. Naïve application of maxi-
mum likelihood methods to the scenario 1 data results in a
very low and biased estimate of efficiency (0.06) along with
an incorrect high estimated population size (~595). In sce-
nario 2, each of the first three tows occurs in a different
path, with no overlap between them. The same occurs for
the next three tows (numbers 4–6) and again for the last
three tows (numbers 7–9). MLE-based estimates for scenario
2 were also biased, with an efficiency estimate of 0.18 and
population estimate of 312. One could recover the true pa-
rameters from either scenario 1 or scenario 2 by appropri-
ately summing the tows related to the first, second, and third
passes within a path. To show this, we derive scenario 3
from scenario 2 by summing tows 1 to 3, 4 to 6, and 7 to 9.
Estimates of efficiency and population size for scenario 3
were equal to their true values, 0.5 and 300, respectively.
The idealized experiments described above would be much

more complicated if tows had partial overlap with each
other, as they would in a field experiment.

Extending the model to allow partially
overlapping paths

Failure to consider the spatial pattern of samples biases
parameter estimates. Partial overlap of tows, due to inability
to control the exact tow path, results in observed catches that
are a function of the numbers removed on previous tows and
the locations of previous removals. A starting place for mod-
eling this complex situation is to model catch data from de-
pletion experiments in terms of average density in the
experimental area, rather than total population size N. Popu-
lation size, a parameter in the Leslie–Davis model, is less
useful as an abundance index in this case because the size of
the experimental area A is arbitrary, depending on the set of
realized tow paths. Average density, however, is a useful
measure of abundance because it does not rely on the partic-
ular set of tow paths.

Reparameterization of the Leslie–Davis model in terms of
average density rather than population number can be shown
for a restricted case in which the area swept by a single tow
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Fig. 1. Three hypothetical depletion experiments demonstrating
that parameter estimates will be biased unless spatial information
on sample location is incorporated.



a and the experimental area A are constant. The average
density is D = N/A, so that A = N/D. Substituting for A in
eq. 1 gives C = eaD. The average density in the cell after re-
moval of C animals is (N – C)/A = N/A – C/A = D – (eaD/A) =
D(1 – (ea/A)). Recursive computation of catch, population
size, density, and cumulative catch is summarized for three
time steps (Table 1). The elemental equation derived in Ta-
ble 1 demonstrates that the expected catch in a cell that has
been swept j times is

(3) E C eaD e a Aj
j( ) ( ( / ))� � �

0
11

Equation 3 expresses catch per sample as a function of an-
imal density, but further development of the model is needed
to handle the case in which the probability of capture for an-
imals inside the tow path is e and the probability for animals
outside the tow path is zero. To address this issue, we treat a
tow path as a string of individual cells, each of which is
characterized with the same nonzero sampling probability.
Cells that are not sampled by that tow are not included, in
contrast with an analysis that considered all animals in the
entire experimental area as equally vulnerable.

To implement this concept, it is necessary to define a
“hits” matrix that represents the path of a tow as a discrete
string of adjacent cells and retains a record of the number of
previous contacts of these cells by the sampling device. The
expected value of catch from an individual cell along a tow
path can be predicted using eq. 3. The expected catch for the
entire tow can now be represented as the sum of the ex-
pected catches from all cells. In effect, each cell within in a
tow can be viewed as an individual depletion experiment.
Because the catch in the ith tow is the sum of catches from
individual cells, it is the sum of catches from cells hit 1 to i
times. Thus the expected catch for a tow depends not only
on the path of the sampling device, but also on the sampling
history of each cell (Fig. 2). Equation 3 can be modified to
account for hits of cells:

(4) E C ea D f ei i i j
j

i
j( ) ( ),� �

�

��0
1

11 �

where Ci is the number caught in tow i (i = 1,…, I), e is the
efficiency, i.e., Prob(capture |encounter), ai is the area swept
by tow i, D0 is the initial density (number/area), and fi,j is the
fraction of tow i that was hit i times, where fi jj

i
, �

�� 1
1

.

The parameter � is analogous to the a/A term in eq. 3 and is
defined as the ratio of the width of the sampling device
wdredge to the width of the cell � x:

(5) � � w xdredge /�

When applying the model, the choice of cell width is an im-
portant practical decision related to the accuracy and preci-
sion of gear location and gear size. The parameter � would
be 1.0 in an ideal situation with perfect information on the
location of the sampling device, a tow width equal to cell
width, and a tow path restricted to one and only one cell per
unit time. In practice, these conditions are violated to vary-
ing degrees. This can be dealt with in a model by selecting a
cell width that is commensurate with the imprecision of data
on location of the sampling device. For instance, if the loca-
tion {x,y} of the sampling device is known to within some
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error level 	, then the size of the individual cell within a tow
path can have an area proportional to the width of the sam-
pling device ± 	.

Adding “indirect” effects to the model

“Indirect” effects in depletion experiments occur when the
sampling process alters the catchability and availability of
some individuals to the sampling gear during the experi-
ment. For example, indirect effects may occur if the zone of
influence of a clam dredge, used in a depletion experiment,
is greater than the width of the dredge or if the availability
of clams changes because of the dredge’s effects on the bot-
tom. Clams could be blown out of the area or buried, with-
out being caught by the dredge (Meyer et al. 1981;
Murawski and Serchuk 1989a).

With these types of indirect effects, the population avail-
able for capture on subsequent passes will be less than that
expected based on eq. 4. Alternatively, if buried clams be-
come more exposed to the dredge with each tow, then the re-
verse would be true. To deal with this general problem, we
allow the parameter � to take on additional meaning. We
now use it to represent not only the size of the sampling de-
vice relative to cell size, but also the device’s indirect effects
on the probability of capture:

(6) � 
� �( / )w xdredge �

where wdredge is the width of dredge, � x is the width of cell,
and 
 is a factor related to indirect effects. When there are no
indirect effects, � equals its nominal value (i.e., the ratio of
dredge width to cell width). � will be greater than the nominal
value if animals become less available to the sampling gear
with repeated passes over the same cell, or if they are lost be-

fore they can be counted in the catch. Conversely, � will be
less than its nominal value if animals become more available,
or new animals become vulnerable to the sampling gear, with
repeated passes. If indirect effects exist, it is necessary to esti-
mate � in a mathematical model, preferably utilizing external
empirical information.

Parameter estimation from the NB
distribution

Standard approaches for estimating NB parameters do not
apply here because in most depletion experiments tows vary
in length. Bissell (1972) showed how to apply the NB model
to counts based on varying element sizes, and we applied his
results to depletion experiments by writing the tow area as a
function of the area swept in tow i, e, �, and the pattern of
overlap with other tows. We define this as the “effective”
area, a i*, of each tow:

(7) a ea f ei i i j
j

i
j* ( ),� �

�

��
1

11 �

Effective area represents the area sampled after adjusting it
downward for cells in the tow path that were sampled a vari-
able number of times during previous tows, which reduces
the number of animals available for capture. Our formulation
of the NB model is similar to that developed by Power and
Moser (1999), who parameterized a model for trawl catches
in terms of the volume of water filtered by the ith tow. Our
definition of a i* differs in that it depends on both the area
swept by the current tow and all previous tows. In effect,
this definition normalizes the area swept in any given tow
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Fig. 2. Diagram of depletion experiment with multiple passes over a spatially distributed population. Grids in the left column represent
example tow paths; histograms in the right column represent the number of cells that are “hit” one or more times in each tow.



with respect to the locations and areas swept by all previous
tows.

The NB distribution for catch can be expressed as a func-
tion of D0, K, and a i*:

(8) Pr ( | , , *)
*

*

*
C C D K a

K

D a K

D a

D a K
i i

i

k

i

i

� �
�

�



�
�

�

�

�
� �

�



�
0

0

0

0
�

�

�

�
�

Ci
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��

�

�
��

�
� K j

jj

Ci 1

1

The log-likelihood function for the parameters K, D0, e,
and � given Ci and ai is

(9) LL( , , , | , ) (log( ) log( * ))K D e C a K K D a Ki i i
i

I

0 0
1

� � � �
�
�

� � �
�
�C D a D a Ki i
i

I

i(log( *) log( * ))0 0
1

� � � �
���
��� log( ) !K j Ci
i

I

j

C

i

I i

1
111

Note that in this formulation, the likelihood function for suc-
cessive probability density functions of catch are linked by
the a i* (eq. 7). This dependency between successive terms in
our formulation of the likelihood function for the NB distri-
bution is analogous to the multinomial distribution (used in a
standard Leslie–Davis model) obtained from a sequence of
linked binomial distributions (Gould et al. 1997, p. 900).

Profile likelihood confidence intervals

Profile likelihood methods (Venzon and Moolgavkar
1988; Hirst 1994) can be used to estimate approximate con-
fidence intervals for single parameters and confidence re-
gions for two parameters. If �* � {D0,e,K,�} represents the
vector of parameters that maximizes the negative
LL(D0,e,K,�|Ci,ai), then the profile likelihood for any pa-
rameter �k may be obtained by finding the roots of

(10) Sup LL * LL *[ ( , )] ( ) ,�
� �

k k k� �� �� � 1
2

2

where ��k* denotes the parameter vector with all parameters
except �k equal to their maximum likelihood estimates, Sup
is the supremum function (Mood et al. 1974), and �2 is the
chi square value for a selected � with 1 df.

Confidence intervals for catch are calculated in the new
model by solving for Cmin and Cmax in the following equa-
tion:

(11) 1 � � � �� Prob( ( *) )min maxC C a Ci

� � NB *
C

C

i iC a
min

max

( | , )�

In the new model, the G test, following White and Bennetts
(1996), measures goodness of fit of observed catches to pre-
dicted catches.

Application to an Atlantic surfclam
depletion experiment

The Atlantic surfclam has been harvested commercially
along the east coast of the USA for over 40 years, and it is
the basis of a multimillion-dollar fishery (Murawski and
Serchuk 1989b; Weinberg 1999; Weinberg et al. 2002a). The
National Marine Fisheries Service has carried out fishery-
independent surveys of this species with the NOAA R/V
Delaware II (48 m in length) using a 1.52 m wide, hydraulic
clam dredge. The dredge has a submersible pump and
weighs 3.2 tonnes. Estimates of dredge efficiency from ex-
periments have been used to convert survey estimates of
catch per tow to estimates of total abundance (NEFSC 1998,
2003, 2004). We analyze one depletion experiment here to
illustrate the new model and to compare it with the Leslie
and Davis (1939) and Gould and Pollock (1997) models.
This experiment was conducted off Atlantic City, New Jer-
sey, USA (39°17.64�N latitude, 73°51.55�W longitude) be-
tween 5 June 1997 and 11 June 1997 in 34 m of water. The
bottom was sand and gravel, the typical substratum for
surfclams. Sixty-two tows were made over the same approx-
imate location in an attempt to deplete the area of surfclams.
The number of surfclams captured by the dredge in each tow
was recorded.

The tow path of the dredge was assumed to match the
ship’s position, which was measured at 1-s intervals with a
differential global positioning system (GPS). Each tow in
this experiment was made with a 2:1 scope (tow line length
to bottom depth) at 1.5 knots for 2 min, not counting the
time that it took to set out and recover the dredge. The aver-
age distance between measurements of ship position was
1.25 m. An inclinometer, mounted on the dredge, electroni-
cally recorded the dredge angle and allowed us to estimate
when the dredge was in contact with the bottom and sam-
pling (Weinberg et al. 2002b).

To apply the model to an actual experiment, it is neces-
sary to estimate the fractional overlap values fi,j for each tow
(eq. 4). The procedure for converting a set of tow-specific
coordinates into a set of proportions involves constructing a
grid of cells for the experimental area, overlaying the tow
tracks over the grid, and computing the number of times that
each cell had been previously sampled through the ith tow.
The fraction of the swept area for tow i that is hit j times is
computed as the ratio of the number of cells hit j times di-
vided by the total number of cells within tow i. By defini-
tion, j � i. These concepts are illustrated in Fig. 2 for a
simplified example. The data matrix used for estimation of
parameters in eq. 8 consists of the total catch per tow Ci and
the estimated fraction of the tow i hit j times (i.e., fi,j).

Programs to preprocess position data, obtain maximum
likelihood estimates, and evaluate goodness of fit were writ-
ten in FORTRAN. International Mathematics and Statistics
Library (IMSL) routines were used for optimization (eq. 9)
and root finding (eq. 10). Optimization used Nelder and
Mead’s (1965) Simplex method, as described in Press et al.
(1992). Confidence intervals (eq. 11) were found by evaluat-
ing the cumulative distribution function for values of ai and
fi,j. After convergence, the model was restarted nine times,
with different sets of initial parameter values, to determine if
parameter estimates were stable.
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This depletion experiment sampled a rectangular area ap-
proximately 500 m × 175 m (NEFSC 1998). We used a
3.05 × 3.05 m cell size because of uncertainty in the exact
position of the dredge in the sampling grid and because suc-
cessive ship position measurements were, on average,
1.22 m apart.

Following eqs. 4 to 5, we computed the hit frequency ma-
trix (Fig. 3). For the first 12 tows, carried out at the begin-
ning of the experiment, 90%–100% of their areas were
sampled for the first time. As the experiment progressed,
tows tended to have a greater fraction of their total area sam-
pled previously. The tows in this experiment were dispersed
over a relatively large area, so even the final tows were still
sampling new ground for approximately 50%–60% of their
paths. For the entire experiment, the maximum number of
times that any cell was contacted was six. The observed
catch ranged from about 50 to 400 individuals per tow, and
catch per tow declined over the course of the experiment
(Fig. 4).

Parameter estimates were 0.645 for dredge efficiency and
0.775 clams·m–2 for density (Table 2). The 95% confidence
interval for efficiency ranged from 0.46 to 0.82, whereas the
interval for density ranged from 0.65 to 1.00 surfclams·m–2

(Table 2). The elliptical joint 95% confidence region for effi-
ciency and density, based on profile likelihood, demonstrated
the negative correlation between these parameters (Fig. 5a),
expected in depletion studies. For this experiment, the confi-
dence regions for � and efficiency (Fig. 5b) and � and density

(Fig. 5c) were relatively small. Estimates of � and density
were positively correlated, whereas the joint confidence re-
gion for � and efficiency suggested that estimates of these pa-
rameters were nearly independent. Other applications of our
model suggest that this may not be true in all cases.

There was a positive relationship between observed catch
per tow and effective area sampled (eq. 7) per tow (Fig. 6).
This relationship occurred because catch per tow was af-
fected not only by the density of clams at the start of the ex-
periment and tow length, but also by catch history and
spatial aspects of sampling. Residuals for observed and pre-
dicted catches (Fig. 7) and comparison of observed and pre-
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Fig. 3. The area of each tow in the surfclam (Spisula solidissima) experiment is decomposed into the fraction that, at the conclusion of
the tow, has been sampled j (j = 1, 2, …, 6) times. Each column represents a tow. Elements within columns sum to one.

Fig. 4. Number of surfclams (Spisula solidissima), by tow, cap-
tured and counted during the depletion experiment.

Model Dredge efficiency Clam density (number·m–2)

Leslie–Davis (linear regression) 0.552 (0.372–0.731) 0.990 (0.872–1.109)
Gould and Pollock (MLE) 0.535 (0.497–0.573) 1.012 (0.969–1.066)
New model (3.0 × 3.0 m cell size) 0.645 (0.461–0.816) 0.775 (0.646–1.001)
New model (1.5 × 1.5 m cell size) 0.673 (0.557–0.674) 0.700 (0.646–0.818)

Note: The Leslie–Davis interval is a standard confidence interval from a linear regression in which errors
are assumed to be normally distributed. Other intervals are from profile likelihoods for the multinomial model
(MLE (maximum likelihood estimation); Gould and Pollock 1997) and the new, negative binomial model pre-
sented in this paper.

Table 2. Results (point estimates and 95% confidence intervals) from depletion models fit to data
from a surfclam (Spisula solidissima) experiment.



dicted frequency distributions for catch per tow (Fig. 8)
suggested good model fit. Based on a G test, there was not a
significant difference between these frequency distributions
(G = 13.51, df = 10, p = 0.197; Fig. 8).

� was estimated to be 0.918, which is greater than the
nominal (i.e., expected) value based only on the ratio of
dredge width to cell width (0.5). This suggested that indirect
losses of clams took place during this experiment. Because �
is a dimensionless ratio, it is difficult to grasp the meaning

of a change in � from 0.5 to 0.918. To clarify this, we did a
sensitivity analysis to measure the impact on the predicted
catch of changing � (following eq. 4). In the sensitivity anal-
ysis, � was varied between 0.4 and 1.2, while density, effi-
ciency, and the dispersion parameter K were held at their
optimal values. Lowering � from 0.918 to 0.4 caused the
predicted average catch per tow to increase by +10%.
Raising � from 0.918 to 1.2 decreased the predicted average
catch per tow by –6%. Reducing � below its optimal solution
of 0.918 simulated reducing the number of clams lost due to

© 2006 NRC Canada

2384 Can. J. Fish. Aquat. Sci. Vol. 63, 2006

Fig. 5. Profile likelihood confidence regions for (a) surfclam
(Spisula solidissima) density (number·m–2) and capture efficiency,
(b) gamma and capture efficiency, and (c) gamma and surfclam
density (number·m–2) in the surfclam experiment. Outermost el-
lipse is a 95% joint confidence interval.

Fig. 6. Observed (�) and predicted (lines) surfclam (Spisula
solidissima) catch per tow as a function of effective area sam-
pled. Predicted values are from a parametric percentile method,
computed with eq. 10. They represent the median and 95% con-
fidence interval.

Fig. 7. Plot of residuals (observed (Obs.) – predicted (pred.)
surfclam (Spisula solidissima) catch) vs. tow number.

Fig. 8. Observed (open bars) and predicted (solid bars) frequency
distributions for surfclam (Spisula solidissima) catch per tow.
Predicted catch is based on the negative binomial model.



indirect factors and raised the predicted catch in the dredge.
Conversely, raising � above 0.918 simulated even greater
loss of clams due to indirect effects and lowered the pre-
dicted catch in the dredge.

We pointed out that � may be difficult to determine. Be-
cause of this, we examined the sensitivity of efficiency and
density to the assumed value of �. Fixed � values between
0.5 and 1.0 were used to the new model, assuming a
3.05 m × 3.05 m cell size, while the solutions for the other
parameters were not constrained. Estimates of dredge effi-
ciency were negatively correlated with �, whereas density
was positively correlated with �. As � increased from 0.5 to
1.0, dredge efficiency estimates decreased from about 0.9 to
about 0.6, whereas density increased from about 0.5 to 0.8
surfclams·m–2 (Fig. 9).

Given the quality of spatial information for this experi-
ment, a cell size of 3.05 m × 3.05 m was judged appropriate.
In one model run, we explored the sensitivity of parameter
estimates to cell size using a smaller cell size of 1.52 m ×
1.52 m. Point estimates for density and efficiency did not
change substantially from those in the run with 3.05 m ×
3.05 m cells, but reducing the cell size caused the confi-
dence intervals to be smaller (Table 2). Thus, using a cell
size that is too small does not appear to cause much bias in
parameter estimates, but it causes underestimation of vari-
ances of the parameters.

Comparison of results with other depletion
models

Point estimates for capture efficiency ranged from 0.54 in
the Gould and Pollock model to 0.67 in the present model,
with a 1.52 m × 1.52 m cell size (Table 2). Point estimates
from the Leslie–Davis model and the Gould and Pollock
model were similar to each other, as were the estimates from
the two runs of the spatial model using different cell sizes.
For dredge efficiency, the narrowest confidence interval
(0.08) was associated with the Gould and Pollock model.
The spatial model with a 1.52 m × 1.52 m cell size produced
a slightly wider interval (0.12). The widest confidence inter-
val (0.36) was associated with the Leslie–Davis model and
the present model, in which we used a 3.05 m × 3.05 m cell
size.

Discussion

Traditional models for analyzing depletion experiments do
not take into account important factors such as the history of
catches from individual cells, the inability of sessile organ-
isms to redistribute themselves between tows, indirect ef-
fects of sampling gear on availability and probability of
capture of organisms, and differences in sampling intensity
between locations. The model presented here considers these
factors. The new model is appropriate to use when accurate
information is available on the location of each sample and
the overlap between samples, when organisms do not redis-
tribute themselves quickly, when indirect effects occur, and
(or) when it is necessary to sample with large dredges, the
positions of which are hard to control. In situations when in-
formation about the location of each sample is not available,

the model reduces to a simpler model comparable to model
2 of Schnute (1983).

Implementing the new spatial model and collecting the
necessary data require technologies such as GPS and geo-
graphical information system (GIS). GPS is used in the field
to position the ship and record instantaneous location during
each tow, and GIS is used in data analysis to visualize tow
paths and compute degree of overlap among tows. Improve-
ments in our ability to locate the dredge in two-dimensional
space will let us reduce cell size and increase the precision
of the overlap (“hits”) indices. The effect of imprecise loca-
tion information is an important topic for future research.

The new model allows for analyses of depletion experi-
ments that vary in total area and in which tows vary in
length. To our knowledge, this is the first model for analysis
of depletion experiments that utilizes the NB distribution, an
appropriate statistical model for overdispersed catches of or-
ganisms in nature (Power and Moser 1999). Gould and
Pollock (1997) addressed overdispersed catches using quasi-
likelihood methods in their analysis of the lobster (Homarus
americanus) data of Paloheimo (1963). Wang and Loneragan
(1996) proposed a more complicated compound distribution
wherein the catchability parameter was distributed as a beta
random variable. Either approach would be sufficient to ad-
dress the effects of overdispersion.

Under the usual assumptions of the Leslie–Davis model,
the joint distribution of the realized set of catches reduces to
a multinomial distribution. The multinomial distribution can
be used because (i) the mean and variance of a single tow
can be expressed as a function of the probability of capture
and the total population at the time of the sample, and
(ii) the realization of catch in all previous tows alters the
probability density function (pdf) of each catch in the series.

Although the multinomial distribution is a convenient
closed-form expression of the joint distribution, other ap-
proaches could be used to model the salient features of a de-
pletion experiment. Any model that is used must describe
the capture process and link the distributions between suc-
cessive tows. Explicit linkage of the pdfs is evident in earlier
literature in which the multinomial distribution for removal
experiments was called a “chain binomial” (Pielou 1977).
As another illustration, Wang and Loneragan (1996) charac-
terized the joint pdf as a beta-binomial distribution.
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Fig. 9. Gamma was varied from 0.5 to 1.0 to determine its effect
on two other parameters in the new model, clam (Spisula
solidissima) density (�) and capture efficiency (�).



In our formulation of the depletion experiment, we chose
to explicitly model the capture process with a NB model al-
lowing a transition from random to overdispersed catches.
The magnitude of overdispersion is indexed by K: when K is
large the model converges to a Poisson distribution, which
can be approximated by a binomial distribution (Mood et al.
1974). Our model also preserves the explicit dependency in
the likelihood function such that each catch is dependent on
previous tows. However, this dependency is not based on or-
der as in the standard depletion model. Instead, it depends
on the degree of spatial overlap of the current catch with all
previous catches, as represented by their respective tow
paths. The dependency of terms in the joint density function
for catches in a depletion experiment for sessile organisms is
handled through the computed measures of spatial overlap fi,j
and the spatially explicit cell- or patch-based formulation in
which each tow path hits a linked set of cells. The resulting
joint distribution of catches may have a closed-form distri-
bution, but we have not investigated this.

Differences in parameter estimates between the new
model and traditional depletion models are caused by at
least two factors. First, there is no explicit treatment of de-
gree of tow overlap in the Leslie–Davis model; therefore,
one might incorrectly interpret a high catch resulting from
sampling new ground late in a depletion experiment as a low
dredge efficiency. Second, indirect effects are not included
in the Leslie–Davis model, so it might overestimate dredge
efficiency by incorrectly attributing a low catch per tow to
efficiency rather than to indirect effects of the gear in cases
when it lowers the catchability of animals. These two factors
bias the efficiency estimate in opposing directions and could
even cancel each other out. Because the new model can real-
istically incorporate information on tows paths and indirect
effects, it might yield more accurate estimates of the param-
eters and their variances. Thus far, the new model has been
applied, for stock assessment, to data from numerous deple-
tion experiments involving clams and scallops from the US
Atlantic coast (NEFSC 2001, 2003, 2004).

When applied to the surfclam data, the Gould and Pollock
model produced the smallest confidence intervals for both
dredge efficiency and clam density. However, low variance
may have resulted from model misspecification because the
model did not consider the spatial distribution of clams.
Wang and Loneragan (1996) showed that uncertainties in es-
timates of N and q were underestimated by standard ap-
proaches, which did not address overdispersion of
organisms. They attempted to incorporate the spatial pattern
of organisms by treating the catchability parameter q in their
model as a random number from a beta distribution. Earlier,
Crittenden (1983) attempted to model the capture process by
explicitly incorporating an aggregation factor into the
Leslie–Davis model. Variations in catchability have also
been modeled as explicit functions of environmental param-
eters (Yamakawa et al. 1994), competing species (Polovina
1986), and independent signs of animal activity (Routledge
1989). We have modeled catchability as an explicit function
of the spatial pattern of overlap among tows.

Gamma, cell size, and the catchability parameter
In practice, direct and indirect information about the be-

havior of the dredge, the animals, and their interactions

could be used in a Bayesian approach to specify a likely
range of values for �. For the experiment considered here,
empirical studies (Meyer et al. 1981; Murawski and Serchuk
1989a) indicated that the influence of the dredge on clams
could extend half a dredge width beyond its nominal value.
A lower bound would be one dredge width. Using a � value
greater than the ratio of the dredge width to cell width
would imply that the expected population size within a cell
that is available to the dredge on subsequent passes has been
reduced beyond that explained by observed catches.

The � parameter is also related to the selection of the ap-
propriate cell size for applying the spatial model. At the ex-
treme, as the cell size in the model increases, approaching
the size of the area of the entire multiple-tow experiment,
the new spatial model converges to the nonspatial Leslie–
Davis model. Choice of cell size must be scaled to the de-
gree of uncertainty about the position of the sampling gear
and the tenability of the assumption of equal catchability of
animals between samples, at the level of the cell. In the
surfclam experiment, it was possible to run the spatial model
with a cell size equal to or less than one dredge width. In
that case, variances of parameters would be underestimated
because the true position of the dredge is not known with
such accuracy. This explains why the confidence intervals
were much smaller when the new model was run with a
1.52 m × 1.52 m cell size, compared with the more appropri-
ate 3.05 m × 3.05 m cell size. The cell size of 3.05 m ×
3.05 m was more appropriate given the distance between
successive ship positions, the dredge width, and uncertainty
about dredge location. Using a cell size greater than the
width of the dredge reflected the positional uncertainty of
the dredge appropriately, but using a larger cell made the as-
sumption about equal catchability of animals within cells be-
tween tows less tenable. Thus, there is a trade-off between
cell size and satisfying the equal-catchability assumption.
This assumption is more likely to be satisfied if a sensor
could be used to track the location of the dredge directly
(e.g., Takeda et al. 1995), making it appropriate to choose a
smaller cell size for modeling.

Through the � parameter, we presented one formulation of
the capture process in which indirect losses of individuals
may occur. Schnute (1983) considered other hypotheses,
which could be included in our model by modifying eq. 4.
Schnute considered the situation in which catchability de-
clined with successive samples. For example, the efficiency
of the first pass over an area can differ from that in subse-
quent samples, leading to a model with two efficiency pa-
rameters (Schnute 1983, model 2, p. 2155). A similar
concept has been incorporated in models for electroshocking
of fish in streams (Riley and Fausch 1992). In wildlife stud-
ies, the Mh and Mt models of Otis et al. (1978) allow for
changes in catchability among animals and among recapture
periods, respectively. Kendall and Bjorkland (2001) ad-
dressed the problem of temporary emigration of sea turtles
(Eretmochelys imbricata) from the study area by allowing
the probability of detection in a time period to vary. Their
model was able to obtain unbiased estimates of survival and
breeding probabilities.

Our model does not explicitly model variations in initial
density over the area of the depletion experiment. Such vari-
ations might arise from habitat discontinuities (e.g., discrete
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beds of scallops; Caddy 1975). Nevertheless, the K parame-
ter in the NB model provides some indirect information on
the spatial heterogeneity (Pielou 1977; White and Bennetts
1996). The biases inherent in a nonspatial treatment of de-
pletion experiments for sessile animals were demonstrated
herein. Because the new model considers the spatial pattern
of the animals and the tows, it should reduce the potential
for these biases. Although many models can be used to de-
scribe overdispersion, the NB model has proved useful in
many fisheries applications. A formal validation of the new
model via extensive simulation experiments will be the sub-
ject of a future paper. Preliminary simulations have shown
that the model can effectively recover the underlying param-
eters. In our application of the model to other species
(NEFSC 2000b, 2001, 2004), we have found that the � pa-
rameter is not always identifiable. The ability to estimate all
four model parameters is related to the overlap pattern of
tows within a depletion experiment. Tows that overlap ex-
tensively will be more informative about the joint effects of
the efficiency and � parameters.

This paper presents a realistic and flexible model for ana-
lyzing depletion experiments to estimate catch efficiency and
density of organisms in an area. When combined with popu-
lation abundance indices from standardized surveys, gear ef-
ficiency estimates can play an important role in direct stock
size estimation (Vølstad et al. 2000; NEFSC 2003, 2004).
Because gear efficiency may vary with habitat (NEFSC
2000a, 2000b), surveys that include multiple habitats may
require multiple depletion experiments. From a statistical
perspective, the benefit of measuring catch efficiency in sev-
eral habitats may surpass the value of increasing the number
of samples (tows) in a survey (Vølstad et al. 2000). Our con-
clusions are consistent with those of Schnute (1983), who
advanced the notion that parametric descriptions of changing
catchability were important aspects of depletion experiments
in fisheries.
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